

 $(\ln 2 = 0.693)$ 

(1) 15.01 s

(2) 17.32 s (3) 0.034 s (4) 34.65 s

| JEE MAINS 2021                                                            |
|---------------------------------------------------------------------------|
| SOLUTION: GIVEN THAT THE AMPLITUDE OF                                     |
| THE SHM DECREASES,                                                        |
|                                                                           |
| So, we have the decay equation of amplitude as ( from damped oscillation) |
|                                                                           |
| $A = A_0 e^{-\frac{6t}{2m}}$                                              |
| KOOBE                                                                     |
| here Y=-bt (in Lectures, we                                               |
| here $\gamma = -bt$ (in Lectures, we had $Ce^{\gamma t}$ )                |
| and b = decay constant                                                    |
| and $b \equiv decay$ constant<br>so, we be need time for $Ao$ ,           |
|                                                                           |
| $A6 = A6e^{\frac{-6t}{2m}} \Rightarrow ln(\frac{1}{2}) = \frac{-6t}{2m}$  |
| $\frac{1}{2}$ $\left(\frac{2}{2}\right)$ $\frac{2m}{m}$                   |
| $\Rightarrow bt = ln(2)$                                                  |
| $\geq m$                                                                  |
| => 208 t= ln(2) x 2m = 0.693 x 2x 500                                     |
| b 20                                                                      |
| t= 34.651ec                                                               |
|                                                                           |